MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. N08031 Stainless Steel

319.0 aluminum belongs to the aluminum alloys classification, while N08031 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (6, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is N08031 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
210
Elongation at Break, % 1.8 to 2.0
45
Fatigue Strength, MPa 76 to 80
290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Shear Strength, MPa 170 to 210
510
Tensile Strength: Ultimate (UTS), MPa 190 to 240
730
Tensile Strength: Yield (Proof), MPa 110 to 180
310

Thermal Properties

Latent Heat of Fusion, J/g 480
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1440
Melting Onset (Solidus), °C 540
1390
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 110
12
Thermal Expansion, µm/m-K 22
18

Otherwise Unclassified Properties

Base Metal Price, % relative 10
39
Density, g/cm3 2.9
8.1
Embodied Carbon, kg CO2/kg material 7.7
7.1
Embodied Energy, MJ/kg 140
96
Embodied Water, L/kg 1080
240

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
270
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
230
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 18 to 24
25
Strength to Weight: Bending, points 25 to 30
22
Thermal Diffusivity, mm2/s 44
3.1
Thermal Shock Resistance, points 8.6 to 11
14

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 3.0 to 4.0
1.0 to 1.4
Iron (Fe), % 0 to 1.0
29 to 36.9
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 7.0
Nickel (Ni), % 0 to 0.35
30 to 32
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 5.5 to 6.5
0 to 0.3
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0