MakeItFrom.com
Menu (ESC)

319.0 Aluminum vs. S33228 Stainless Steel

319.0 aluminum belongs to the aluminum alloys classification, while S33228 stainless steel belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 319.0 aluminum and the bottom bar is S33228 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 78 to 84
190
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.8 to 2.0
34
Fatigue Strength, MPa 76 to 80
170
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 170 to 210
380
Tensile Strength: Ultimate (UTS), MPa 190 to 240
570
Tensile Strength: Yield (Proof), MPa 110 to 180
210

Thermal Properties

Latent Heat of Fusion, J/g 480
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 600
1410
Melting Onset (Solidus), °C 540
1360
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
37
Density, g/cm3 2.9
8.0
Embodied Carbon, kg CO2/kg material 7.7
6.2
Embodied Energy, MJ/kg 140
89
Embodied Water, L/kg 1080
220

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.3 to 3.9
150
Resilience: Unit (Modulus of Resilience), kJ/m3 88 to 220
110
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
24
Strength to Weight: Axial, points 18 to 24
20
Strength to Weight: Bending, points 25 to 30
19
Thermal Shock Resistance, points 8.6 to 11
13

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
0 to 0.025
Carbon (C), % 0
0.040 to 0.080
Cerium (Ce), % 0
0.050 to 0.1
Chromium (Cr), % 0
26 to 28
Copper (Cu), % 3.0 to 4.0
0
Iron (Fe), % 0 to 1.0
36.5 to 42.3
Magnesium (Mg), % 0 to 0.1
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.35
31 to 33
Niobium (Nb), % 0
0.6 to 1.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 5.5 to 6.5
0 to 0.3
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0