MakeItFrom.com
Menu (ESC)

319.0-T6 Aluminum vs. 6014-T6 Aluminum

Both 319.0-T6 aluminum and 6014-T6 aluminum are aluminum alloys. Both are furnished in the T6 temper. They have 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 319.0-T6 aluminum and the bottom bar is 6014-T6 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
69
Elongation at Break, % 1.8
9.1
Fatigue Strength, MPa 80
79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
26
Shear Strength, MPa 210
150
Tensile Strength: Ultimate (UTS), MPa 240
260
Tensile Strength: Yield (Proof), MPa 160
200

Thermal Properties

Latent Heat of Fusion, J/g 480
400
Maximum Temperature: Mechanical, °C 170
180
Melting Completion (Liquidus), °C 600
640
Melting Onset (Solidus), °C 540
620
Specific Heat Capacity, J/kg-K 880
900
Thermal Conductivity, W/m-K 110
200
Thermal Expansion, µm/m-K 22
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 27
53
Electrical Conductivity: Equal Weight (Specific), % IACS 84
180

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.9
2.7
Embodied Carbon, kg CO2/kg material 7.7
8.6
Embodied Energy, MJ/kg 140
160
Embodied Water, L/kg 1080
1190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 3.9
22
Resilience: Unit (Modulus of Resilience), kJ/m3 180
300
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 48
50
Strength to Weight: Axial, points 24
26
Strength to Weight: Bending, points 30
33
Thermal Diffusivity, mm2/s 44
83
Thermal Shock Resistance, points 11
11

Alloy Composition

Aluminum (Al), % 85.8 to 91.5
97.1 to 99.2
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 3.0 to 4.0
0 to 0.25
Iron (Fe), % 0 to 1.0
0 to 0.35
Magnesium (Mg), % 0 to 0.1
0.4 to 0.8
Manganese (Mn), % 0 to 0.5
0.050 to 0.2
Nickel (Ni), % 0 to 0.35
0
Silicon (Si), % 5.5 to 6.5
0.3 to 0.6
Titanium (Ti), % 0 to 0.25
0 to 0.1
Vanadium (V), % 0
0.050 to 0.2
Zinc (Zn), % 0 to 1.0
0 to 0.1
Residuals, % 0
0 to 0.15