MakeItFrom.com
Menu (ESC)

3203 Aluminum vs. 3105 Aluminum

Both 3203 aluminum and 3105 aluminum are aluminum alloys. Their average alloy composition is basically identical. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3203 aluminum and the bottom bar is 3105 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
69
Elongation at Break, % 4.5 to 29
1.1 to 20
Fatigue Strength, MPa 46 to 92
39 to 95
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
26
Shear Strength, MPa 72 to 120
77 to 140
Tensile Strength: Ultimate (UTS), MPa 110 to 200
120 to 240
Tensile Strength: Yield (Proof), MPa 39 to 190
46 to 220

Thermal Properties

Latent Heat of Fusion, J/g 400
400
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 650
660
Melting Onset (Solidus), °C 620
640
Specific Heat Capacity, J/kg-K 900
900
Thermal Conductivity, W/m-K 170
170
Thermal Expansion, µm/m-K 23
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
44
Electrical Conductivity: Equal Weight (Specific), % IACS 140
140

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
9.5
Density, g/cm3 2.8
2.8
Embodied Carbon, kg CO2/kg material 8.1
8.2
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 25
2.6 to 19
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 250
15 to 340
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
50
Strength to Weight: Axial, points 11 to 20
12 to 24
Strength to Weight: Bending, points 19 to 28
20 to 31
Thermal Diffusivity, mm2/s 70
68
Thermal Shock Resistance, points 4.9 to 8.8
5.2 to 11

Alloy Composition

Aluminum (Al), % 96.9 to 99
96 to 99.5
Chromium (Cr), % 0
0 to 0.2
Copper (Cu), % 0 to 0.050
0 to 0.3
Iron (Fe), % 0 to 0.7
0 to 0.7
Magnesium (Mg), % 0
0.2 to 0.8
Manganese (Mn), % 1.0 to 1.5
0.3 to 0.8
Silicon (Si), % 0 to 0.6
0 to 0.6
Titanium (Ti), % 0
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.4
Residuals, % 0
0 to 0.15

Comparable Variants