MakeItFrom.com
Menu (ESC)

3203 Aluminum vs. AISI 347 Stainless Steel

3203 aluminum belongs to the aluminum alloys classification, while AISI 347 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3203 aluminum and the bottom bar is AISI 347 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 4.5 to 29
34 to 46
Fatigue Strength, MPa 46 to 92
220 to 270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
77
Shear Strength, MPa 72 to 120
430 to 460
Tensile Strength: Ultimate (UTS), MPa 110 to 200
610 to 690
Tensile Strength: Yield (Proof), MPa 39 to 190
240 to 350

Thermal Properties

Latent Heat of Fusion, J/g 400
290
Maximum Temperature: Mechanical, °C 180
870
Melting Completion (Liquidus), °C 650
1430
Melting Onset (Solidus), °C 620
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 170
16
Thermal Expansion, µm/m-K 23
17

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
19
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.1
3.6
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1180
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 25
190 to 220
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 250
150 to 310
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 20
22 to 25
Strength to Weight: Bending, points 19 to 28
20 to 22
Thermal Diffusivity, mm2/s 70
4.3
Thermal Shock Resistance, points 4.9 to 8.8
13 to 15

Alloy Composition

Aluminum (Al), % 96.9 to 99
0
Carbon (C), % 0
0 to 0.080
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.7
64.1 to 74
Manganese (Mn), % 1.0 to 1.5
0 to 2.0
Nickel (Ni), % 0
9.0 to 13
Niobium (Nb), % 0
0 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 0 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0