MakeItFrom.com
Menu (ESC)

3203 Aluminum vs. AWS E310Mo

3203 aluminum belongs to the aluminum alloys classification, while AWS E310Mo belongs to the iron alloys. There are 24 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3203 aluminum and the bottom bar is AWS E310Mo.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 4.5 to 29
34
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 26
80
Tensile Strength: Ultimate (UTS), MPa 110 to 200
620

Thermal Properties

Latent Heat of Fusion, J/g 400
310
Melting Completion (Liquidus), °C 650
1420
Melting Onset (Solidus), °C 620
1370
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
14
Thermal Expansion, µm/m-K 23
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 140
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
28
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.1
5.1
Embodied Energy, MJ/kg 150
71
Embodied Water, L/kg 1180
210

Common Calculations

Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 11 to 20
22
Strength to Weight: Bending, points 19 to 28
20
Thermal Diffusivity, mm2/s 70
3.7
Thermal Shock Resistance, points 4.9 to 8.8
15

Alloy Composition

Aluminum (Al), % 96.9 to 99
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
25 to 28
Copper (Cu), % 0 to 0.050
0 to 0.75
Iron (Fe), % 0 to 0.7
42.8 to 52
Manganese (Mn), % 1.0 to 1.5
1.0 to 2.5
Molybdenum (Mo), % 0
2.0 to 3.0
Nickel (Ni), % 0
20 to 22
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 0 to 0.6
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0