MakeItFrom.com
Menu (ESC)

3203 Aluminum vs. EN 1.1170 Steel

3203 aluminum belongs to the aluminum alloys classification, while EN 1.1170 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3203 aluminum and the bottom bar is EN 1.1170 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 4.5 to 29
16 to 17
Fatigue Strength, MPa 46 to 92
220 to 330
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 26
73
Shear Strength, MPa 72 to 120
390 to 450
Tensile Strength: Ultimate (UTS), MPa 110 to 200
640 to 730
Tensile Strength: Yield (Proof), MPa 39 to 190
330 to 500

Thermal Properties

Latent Heat of Fusion, J/g 400
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 650
1460
Melting Onset (Solidus), °C 620
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 170
50
Thermal Expansion, µm/m-K 23
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 140
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
2.1
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 8.1
1.5
Embodied Energy, MJ/kg 150
19
Embodied Water, L/kg 1180
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 25
91 to 100
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 250
290 to 670
Stiffness to Weight: Axial, points 14
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 11 to 20
23 to 26
Strength to Weight: Bending, points 19 to 28
21 to 23
Thermal Diffusivity, mm2/s 70
13
Thermal Shock Resistance, points 4.9 to 8.8
20 to 23

Alloy Composition

Aluminum (Al), % 96.9 to 99
0
Carbon (C), % 0
0.25 to 0.32
Chromium (Cr), % 0
0 to 0.4
Copper (Cu), % 0 to 0.050
0
Iron (Fe), % 0 to 0.7
96.7 to 98.5
Manganese (Mn), % 1.0 to 1.5
1.3 to 1.7
Molybdenum (Mo), % 0
0 to 0.1
Nickel (Ni), % 0
0 to 0.4
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 0 to 0.6
0 to 0.4
Sulfur (S), % 0
0 to 0.035
Zinc (Zn), % 0 to 0.1
0
Residuals, % 0 to 0.15
0