MakeItFrom.com
Menu (ESC)

3203 Aluminum vs. C61800 Bronze

3203 aluminum belongs to the aluminum alloys classification, while C61800 bronze belongs to the copper alloys. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3203 aluminum and the bottom bar is C61800 bronze.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 4.5 to 29
26
Fatigue Strength, MPa 46 to 92
190
Poisson's Ratio 0.33
0.34
Shear Modulus, GPa 26
44
Shear Strength, MPa 72 to 120
310
Tensile Strength: Ultimate (UTS), MPa 110 to 200
740
Tensile Strength: Yield (Proof), MPa 39 to 190
310

Thermal Properties

Latent Heat of Fusion, J/g 400
230
Maximum Temperature: Mechanical, °C 180
220
Melting Completion (Liquidus), °C 650
1050
Melting Onset (Solidus), °C 620
1040
Specific Heat Capacity, J/kg-K 900
440
Thermal Conductivity, W/m-K 170
64
Thermal Expansion, µm/m-K 23
18

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
13
Electrical Conductivity: Equal Weight (Specific), % IACS 140
14

Otherwise Unclassified Properties

Base Metal Price, % relative 9.0
28
Density, g/cm3 2.8
8.3
Embodied Carbon, kg CO2/kg material 8.1
3.1
Embodied Energy, MJ/kg 150
52
Embodied Water, L/kg 1180
390

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 8.0 to 25
150
Resilience: Unit (Modulus of Resilience), kJ/m3 11 to 250
420
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 50
19
Strength to Weight: Axial, points 11 to 20
25
Strength to Weight: Bending, points 19 to 28
22
Thermal Diffusivity, mm2/s 70
18
Thermal Shock Resistance, points 4.9 to 8.8
26

Alloy Composition

Aluminum (Al), % 96.9 to 99
8.5 to 11
Copper (Cu), % 0 to 0.050
86.9 to 91
Iron (Fe), % 0 to 0.7
0.5 to 1.5
Lead (Pb), % 0
0 to 0.020
Manganese (Mn), % 1.0 to 1.5
0
Silicon (Si), % 0 to 0.6
0 to 0.1
Zinc (Zn), % 0 to 0.1
0 to 0.020
Residuals, % 0
0 to 0.5