MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. ACI-ASTM CK35MN Steel

324.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CK35MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is ACI-ASTM CK35MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
210
Elongation at Break, % 3.0 to 4.0
40
Fatigue Strength, MPa 77 to 89
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
81
Tensile Strength: Ultimate (UTS), MPa 210 to 310
650
Tensile Strength: Yield (Proof), MPa 110 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 500
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
12
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.1

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
31
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 7.9
5.9
Embodied Energy, MJ/kg 150
81
Embodied Water, L/kg 1090
210

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
210
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
240
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 22 to 32
22
Strength to Weight: Bending, points 29 to 38
21
Thermal Diffusivity, mm2/s 62
3.3
Thermal Shock Resistance, points 9.7 to 14
14

Alloy Composition

Aluminum (Al), % 87.3 to 92.2
0
Carbon (C), % 0
0 to 0.035
Chromium (Cr), % 0
22 to 24
Copper (Cu), % 0.4 to 0.6
0 to 0.4
Iron (Fe), % 0 to 1.2
43.4 to 51.8
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
6.0 to 6.8
Nickel (Ni), % 0 to 0.3
20 to 22
Nitrogen (N), % 0
0.21 to 0.32
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 7.0 to 8.0
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.2
0