MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. ASTM Grade HC Steel

324.0 aluminum belongs to the aluminum alloys classification, while ASTM grade HC steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is ASTM grade HC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.0 to 4.0
6.0
Fatigue Strength, MPa 77 to 89
96
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 210 to 310
430
Tensile Strength: Yield (Proof), MPa 110 to 270
200

Thermal Properties

Latent Heat of Fusion, J/g 500
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1410
Melting Onset (Solidus), °C 550
1370
Specific Heat Capacity, J/kg-K 900
490
Thermal Conductivity, W/m-K 150
17
Thermal Expansion, µm/m-K 21
11

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
14
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 7.9
2.8
Embodied Energy, MJ/kg 150
40
Embodied Water, L/kg 1090
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
21
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
95
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
26
Strength to Weight: Axial, points 22 to 32
16
Strength to Weight: Bending, points 29 to 38
16
Thermal Diffusivity, mm2/s 62
4.5
Thermal Shock Resistance, points 9.7 to 14
14

Alloy Composition

Aluminum (Al), % 87.3 to 92.2
0
Carbon (C), % 0
0 to 0.5
Chromium (Cr), % 0
26 to 30
Copper (Cu), % 0.4 to 0.6
0
Iron (Fe), % 0 to 1.2
61.9 to 74
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.3
0 to 4.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.0 to 8.0
0 to 2.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.2
0