MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. AWS E80C-Ni2

324.0 aluminum belongs to the aluminum alloys classification, while AWS E80C-Ni2 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is AWS E80C-Ni2.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.0 to 4.0
27
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Tensile Strength: Ultimate (UTS), MPa 210 to 310
620
Tensile Strength: Yield (Proof), MPa 110 to 270
540

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 550
1410
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
52
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
3.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.9
1.6
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1090
51

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
160
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
770
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 22 to 32
22
Strength to Weight: Bending, points 29 to 38
21
Thermal Diffusivity, mm2/s 62
14
Thermal Shock Resistance, points 9.7 to 14
18

Alloy Composition

Aluminum (Al), % 87.3 to 92.2
0
Carbon (C), % 0
0 to 0.12
Copper (Cu), % 0.4 to 0.6
0 to 0.35
Iron (Fe), % 0 to 1.2
93.8 to 98.3
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Nickel (Ni), % 0 to 0.3
1.8 to 2.8
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.0 to 8.0
0 to 0.9
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0
0 to 0.5