MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. EN 1.4646 Stainless Steel

324.0 aluminum belongs to the aluminum alloys classification, while EN 1.4646 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (9, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is EN 1.4646 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.0 to 4.0
34
Fatigue Strength, MPa 77 to 89
340
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Tensile Strength: Ultimate (UTS), MPa 210 to 310
750
Tensile Strength: Yield (Proof), MPa 110 to 270
430

Thermal Properties

Latent Heat of Fusion, J/g 500
290
Maximum Temperature: Mechanical, °C 170
910
Melting Completion (Liquidus), °C 610
1390
Melting Onset (Solidus), °C 550
1340
Specific Heat Capacity, J/kg-K 900
480
Thermal Expansion, µm/m-K 21
17

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
13
Density, g/cm3 2.7
7.7
Embodied Carbon, kg CO2/kg material 7.9
2.8
Embodied Energy, MJ/kg 150
41
Embodied Water, L/kg 1090
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
220
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
460
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 22 to 32
27
Strength to Weight: Bending, points 29 to 38
24
Thermal Shock Resistance, points 9.7 to 14
16

Alloy Composition

Aluminum (Al), % 87.3 to 92.2
0
Carbon (C), % 0
0.020 to 0.1
Chromium (Cr), % 0
17 to 19
Copper (Cu), % 0.4 to 0.6
1.5 to 3.0
Iron (Fe), % 0 to 1.2
59 to 67.3
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
10.5 to 12.5
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.3
3.5 to 4.5
Nitrogen (N), % 0
0.2 to 0.3
Phosphorus (P), % 0
0 to 0.050
Silicon (Si), % 7.0 to 8.0
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.2
0