MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. EN 1.8870 Steel

324.0 aluminum belongs to the aluminum alloys classification, while EN 1.8870 steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is EN 1.8870 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
190
Elongation at Break, % 3.0 to 4.0
21
Fatigue Strength, MPa 77 to 89
310
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 210 to 310
610
Tensile Strength: Yield (Proof), MPa 110 to 270
450

Thermal Properties

Latent Heat of Fusion, J/g 500
250
Maximum Temperature: Mechanical, °C 170
410
Melting Completion (Liquidus), °C 610
1460
Melting Onset (Solidus), °C 550
1420
Specific Heat Capacity, J/kg-K 900
470
Thermal Conductivity, W/m-K 150
39
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
7.5
Electrical Conductivity: Equal Weight (Specific), % IACS 120
8.6

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
2.8
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.9
1.7
Embodied Energy, MJ/kg 150
22
Embodied Water, L/kg 1090
50

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
120
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
530
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
24
Strength to Weight: Axial, points 22 to 32
22
Strength to Weight: Bending, points 29 to 38
20
Thermal Diffusivity, mm2/s 62
10
Thermal Shock Resistance, points 9.7 to 14
18

Alloy Composition

Aluminum (Al), % 87.3 to 92.2
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0
0 to 0.5
Copper (Cu), % 0.4 to 0.6
0 to 0.3
Iron (Fe), % 0 to 1.2
95.1 to 100
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.3
0 to 1.0
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.0 to 8.0
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.2
0 to 0.030
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 1.0
0
Zirconium (Zr), % 0
0 to 0.050
Residuals, % 0 to 0.2
0