MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. EN AC-46400 Aluminum

Both 324.0 aluminum and EN AC-46400 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
72
Elongation at Break, % 3.0 to 4.0
1.1 to 1.7
Fatigue Strength, MPa 77 to 89
75 to 85
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 210 to 310
170 to 310
Tensile Strength: Yield (Proof), MPa 110 to 270
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 500
520
Maximum Temperature: Mechanical, °C 170
170
Melting Completion (Liquidus), °C 610
610
Melting Onset (Solidus), °C 550
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 150
130
Thermal Expansion, µm/m-K 21
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
33
Electrical Conductivity: Equal Weight (Specific), % IACS 120
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.9
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1090
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
82 to 500
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
52
Strength to Weight: Axial, points 22 to 32
18 to 32
Strength to Weight: Bending, points 29 to 38
26 to 38
Thermal Diffusivity, mm2/s 62
55
Thermal Shock Resistance, points 9.7 to 14
7.8 to 14

Alloy Composition

Aluminum (Al), % 87.3 to 92.2
85.4 to 90.5
Copper (Cu), % 0.4 to 0.6
0.8 to 1.3
Iron (Fe), % 0 to 1.2
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.4 to 0.7
0.25 to 0.65
Manganese (Mn), % 0 to 0.5
0.15 to 0.55
Nickel (Ni), % 0 to 0.3
0 to 0.2
Silicon (Si), % 7.0 to 8.0
8.3 to 9.7
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.2
0 to 0.2
Zinc (Zn), % 0 to 1.0
0 to 0.8
Residuals, % 0
0 to 0.25

Comparable Variants