MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. Grade CW12MW Nickel

324.0 aluminum belongs to the aluminum alloys classification, while grade CW12MW nickel belongs to the nickel alloys. There are 25 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is grade CW12MW nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
220
Elongation at Break, % 3.0 to 4.0
4.6
Fatigue Strength, MPa 77 to 89
130
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
85
Tensile Strength: Ultimate (UTS), MPa 210 to 310
560
Tensile Strength: Yield (Proof), MPa 110 to 270
310

Thermal Properties

Latent Heat of Fusion, J/g 500
320
Maximum Temperature: Mechanical, °C 170
960
Melting Completion (Liquidus), °C 610
1610
Melting Onset (Solidus), °C 550
1560
Specific Heat Capacity, J/kg-K 900
410
Thermal Expansion, µm/m-K 21
12

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
70
Density, g/cm3 2.7
9.1
Embodied Carbon, kg CO2/kg material 7.9
13
Embodied Energy, MJ/kg 150
180
Embodied Water, L/kg 1090
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
22
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
220
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 52
22
Strength to Weight: Axial, points 22 to 32
17
Strength to Weight: Bending, points 29 to 38
17
Thermal Shock Resistance, points 9.7 to 14
16

Alloy Composition

Aluminum (Al), % 87.3 to 92.2
0
Carbon (C), % 0
0 to 0.12
Chromium (Cr), % 0
15.5 to 17.5
Copper (Cu), % 0.4 to 0.6
0
Iron (Fe), % 0 to 1.2
4.5 to 7.5
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
16 to 18
Nickel (Ni), % 0 to 0.3
49.2 to 60.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.0 to 8.0
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
3.8 to 5.3
Vanadium (V), % 0
0.2 to 0.4
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.2
0