MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. C36000 Brass

324.0 aluminum belongs to the aluminum alloys classification, while C36000 brass belongs to the copper alloys. There are 28 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is C36000 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
100
Elongation at Break, % 3.0 to 4.0
5.8 to 23
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 27
39
Tensile Strength: Ultimate (UTS), MPa 210 to 310
330 to 530
Tensile Strength: Yield (Proof), MPa 110 to 270
140 to 260

Thermal Properties

Latent Heat of Fusion, J/g 500
170
Maximum Temperature: Mechanical, °C 170
120
Melting Completion (Liquidus), °C 610
900
Melting Onset (Solidus), °C 550
890
Specific Heat Capacity, J/kg-K 900
380
Thermal Conductivity, W/m-K 150
120
Thermal Expansion, µm/m-K 21
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
26
Electrical Conductivity: Equal Weight (Specific), % IACS 120
29

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 7.9
2.6
Embodied Energy, MJ/kg 150
45
Embodied Water, L/kg 1090
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
25 to 62
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
89 to 340
Stiffness to Weight: Axial, points 15
7.0
Stiffness to Weight: Bending, points 52
19
Strength to Weight: Axial, points 22 to 32
11 to 18
Strength to Weight: Bending, points 29 to 38
13 to 18
Thermal Diffusivity, mm2/s 62
37
Thermal Shock Resistance, points 9.7 to 14
11 to 18

Alloy Composition

Aluminum (Al), % 87.3 to 92.2
0
Copper (Cu), % 0.4 to 0.6
60 to 63
Iron (Fe), % 0 to 1.2
0 to 0.35
Lead (Pb), % 0
2.5 to 3.7
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0
Nickel (Ni), % 0 to 0.3
0
Silicon (Si), % 7.0 to 8.0
0
Titanium (Ti), % 0 to 0.2
0
Zinc (Zn), % 0 to 1.0
32.5 to 37.5
Residuals, % 0
0 to 0.5