MakeItFrom.com
Menu (ESC)

324.0 Aluminum vs. S31260 Stainless Steel

324.0 aluminum belongs to the aluminum alloys classification, while S31260 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 324.0 aluminum and the bottom bar is S31260 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 71
200
Elongation at Break, % 3.0 to 4.0
23
Fatigue Strength, MPa 77 to 89
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 210 to 310
790
Tensile Strength: Yield (Proof), MPa 110 to 270
540

Thermal Properties

Latent Heat of Fusion, J/g 500
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 610
1450
Melting Onset (Solidus), °C 550
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 150
16
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 34
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 120
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
20
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.9
3.9
Embodied Energy, MJ/kg 150
53
Embodied Water, L/kg 1090
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 6.8 to 8.9
160
Resilience: Unit (Modulus of Resilience), kJ/m3 85 to 510
720
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 52
25
Strength to Weight: Axial, points 22 to 32
28
Strength to Weight: Bending, points 29 to 38
24
Thermal Diffusivity, mm2/s 62
4.3
Thermal Shock Resistance, points 9.7 to 14
22

Alloy Composition

Aluminum (Al), % 87.3 to 92.2
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
24 to 26
Copper (Cu), % 0.4 to 0.6
0.2 to 0.8
Iron (Fe), % 0 to 1.2
59.6 to 67.6
Magnesium (Mg), % 0.4 to 0.7
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.3
5.5 to 7.5
Nitrogen (N), % 0
0.1 to 0.3
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.0 to 8.0
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.2
0
Tungsten (W), % 0
0.1 to 0.5
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.2
0