MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. 5056 Aluminum

Both 328.0 aluminum and 5056 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is 5056 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
67
Elongation at Break, % 1.6 to 2.1
4.9 to 31
Fatigue Strength, MPa 55 to 80
140 to 200
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
25
Tensile Strength: Ultimate (UTS), MPa 200 to 270
290 to 460
Tensile Strength: Yield (Proof), MPa 120 to 170
150 to 410

Thermal Properties

Latent Heat of Fusion, J/g 510
400
Maximum Temperature: Mechanical, °C 180
190
Melting Completion (Liquidus), °C 620
640
Melting Onset (Solidus), °C 560
570
Specific Heat Capacity, J/kg-K 890
910
Thermal Conductivity, W/m-K 120
130
Thermal Expansion, µm/m-K 22
24

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
29
Electrical Conductivity: Equal Weight (Specific), % IACS 99
99

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.7
2.7
Embodied Carbon, kg CO2/kg material 7.8
9.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1070
1180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
12 to 140
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
170 to 1220
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
51
Strength to Weight: Axial, points 21 to 28
30 to 48
Strength to Weight: Bending, points 28 to 34
36 to 50
Thermal Diffusivity, mm2/s 50
53
Thermal Shock Resistance, points 9.2 to 12
13 to 20

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
93 to 95.4
Chromium (Cr), % 0 to 0.35
0.050 to 0.2
Copper (Cu), % 1.0 to 2.0
0 to 0.1
Iron (Fe), % 0 to 1.0
0 to 0.4
Magnesium (Mg), % 0.2 to 0.6
4.5 to 5.6
Manganese (Mn), % 0.2 to 0.6
0.050 to 0.2
Nickel (Ni), % 0 to 0.25
0
Silicon (Si), % 7.5 to 8.5
0 to 0.3
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0 to 0.1
Residuals, % 0
0 to 0.15