MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. AISI 384 Stainless Steel

328.0 aluminum belongs to the aluminum alloys classification, while AISI 384 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is AISI 384 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
150
Elastic (Young's, Tensile) Modulus, GPa 72
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 200 to 270
480

Thermal Properties

Latent Heat of Fusion, J/g 510
290
Maximum Temperature: Mechanical, °C 180
910
Melting Completion (Liquidus), °C 620
1420
Melting Onset (Solidus), °C 560
1380
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 22
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.8
3.7
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 1070
150

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 21 to 28
17
Strength to Weight: Bending, points 28 to 34
17
Thermal Diffusivity, mm2/s 50
4.3
Thermal Shock Resistance, points 9.2 to 12
11

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
0
Carbon (C), % 0
0 to 0.040
Chromium (Cr), % 0 to 0.35
15 to 17
Copper (Cu), % 1.0 to 2.0
0
Iron (Fe), % 0 to 1.0
60.9 to 68
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
0 to 2.0
Nickel (Ni), % 0 to 0.25
17 to 19
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 7.5 to 8.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0