MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. EN 1.0488 Steel

328.0 aluminum belongs to the aluminum alloys classification, while EN 1.0488 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is EN 1.0488 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
130
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 2.1
27
Fatigue Strength, MPa 55 to 80
210
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 200 to 270
440
Tensile Strength: Yield (Proof), MPa 120 to 170
280

Thermal Properties

Latent Heat of Fusion, J/g 510
250
Maximum Temperature: Mechanical, °C 180
400
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 120
49
Thermal Expansion, µm/m-K 22
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.3
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.3
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.5
Embodied Energy, MJ/kg 140
20
Embodied Water, L/kg 1070
49

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
100
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
200
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 21 to 28
15
Strength to Weight: Bending, points 28 to 34
16
Thermal Diffusivity, mm2/s 50
13
Thermal Shock Resistance, points 9.2 to 12
14

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
0.020 to 0.024
Carbon (C), % 0
0 to 0.16
Chromium (Cr), % 0 to 0.35
0 to 0.3
Copper (Cu), % 1.0 to 2.0
0 to 0.3
Iron (Fe), % 0 to 1.0
96.6 to 99.38
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
0.6 to 1.5
Molybdenum (Mo), % 0
0 to 0.080
Nickel (Ni), % 0 to 0.25
0 to 0.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.012
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 8.5
0 to 0.4
Sulfur (S), % 0
0 to 0.0080
Titanium (Ti), % 0 to 0.25
0 to 0.030
Vanadium (V), % 0
0 to 0.050
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0