MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. EN 1.4515 Stainless Steel

328.0 aluminum belongs to the aluminum alloys classification, while EN 1.4515 stainless steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (5, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is EN 1.4515 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.6 to 2.1
25
Fatigue Strength, MPa 55 to 80
380
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 200 to 270
730
Tensile Strength: Yield (Proof), MPa 120 to 170
550

Thermal Properties

Latent Heat of Fusion, J/g 510
300
Maximum Temperature: Mechanical, °C 180
1100
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 120
16
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 99
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 2.7
7.8
Embodied Carbon, kg CO2/kg material 7.8
3.8
Embodied Energy, MJ/kg 140
53
Embodied Water, L/kg 1070
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
170
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
730
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 21 to 28
26
Strength to Weight: Bending, points 28 to 34
23
Thermal Diffusivity, mm2/s 50
4.3
Thermal Shock Resistance, points 9.2 to 12
20

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.35
24.5 to 26.5
Copper (Cu), % 1.0 to 2.0
0.8 to 1.3
Iron (Fe), % 0 to 1.0
58.4 to 66.6
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
2.5 to 3.5
Nickel (Ni), % 0 to 0.25
5.5 to 7.0
Nitrogen (N), % 0
0.12 to 0.25
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 8.5
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0