MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. EN 1.4807 Stainless Steel

328.0 aluminum belongs to the aluminum alloys classification, while EN 1.4807 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is EN 1.4807 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
140
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 2.1
4.5
Fatigue Strength, MPa 55 to 80
120
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 200 to 270
480
Tensile Strength: Yield (Proof), MPa 120 to 170
250

Thermal Properties

Latent Heat of Fusion, J/g 510
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 620
1390
Melting Onset (Solidus), °C 560
1350
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 120
12
Thermal Expansion, µm/m-K 22
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.7
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
39
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 7.8
6.8
Embodied Energy, MJ/kg 140
97
Embodied Water, L/kg 1070
190

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
18
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
160
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 21 to 28
17
Strength to Weight: Bending, points 28 to 34
17
Thermal Diffusivity, mm2/s 50
3.2
Thermal Shock Resistance, points 9.2 to 12
12

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0 to 0.35
17 to 20
Copper (Cu), % 1.0 to 2.0
0
Iron (Fe), % 0 to 1.0
36.6 to 46.7
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.25
34 to 36
Niobium (Nb), % 0
1.0 to 1.8
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 7.5 to 8.5
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0