MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. EN 1.8873 Steel

328.0 aluminum belongs to the aluminum alloys classification, while EN 1.8873 steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is EN 1.8873 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
200
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 2.1
19
Fatigue Strength, MPa 55 to 80
340
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 200 to 270
660
Tensile Strength: Yield (Proof), MPa 120 to 170
490

Thermal Properties

Latent Heat of Fusion, J/g 510
250
Maximum Temperature: Mechanical, °C 180
420
Melting Completion (Liquidus), °C 620
1460
Melting Onset (Solidus), °C 560
1420
Specific Heat Capacity, J/kg-K 890
470
Thermal Conductivity, W/m-K 120
39
Thermal Expansion, µm/m-K 22
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
7.8
Electrical Conductivity: Equal Weight (Specific), % IACS 99
8.9

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.2
Density, g/cm3 2.7
7.9
Embodied Carbon, kg CO2/kg material 7.8
1.8
Embodied Energy, MJ/kg 140
24
Embodied Water, L/kg 1070
52

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
110
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
650
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 21 to 28
23
Strength to Weight: Bending, points 28 to 34
21
Thermal Diffusivity, mm2/s 50
10
Thermal Shock Resistance, points 9.2 to 12
19

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
0
Boron (B), % 0
0 to 0.0050
Carbon (C), % 0
0 to 0.18
Chromium (Cr), % 0 to 0.35
0 to 1.0
Copper (Cu), % 1.0 to 2.0
0 to 0.3
Iron (Fe), % 0 to 1.0
93.6 to 100
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.7
Molybdenum (Mo), % 0
0 to 0.7
Nickel (Ni), % 0 to 0.25
0 to 1.5
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.015
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 7.5 to 8.5
0 to 0.6
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 1.5
0
Zirconium (Zr), % 0
0 to 0.15
Residuals, % 0 to 0.5
0