MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. EN AC-43200 Aluminum

Both 328.0 aluminum and EN AC-43200 aluminum are aluminum alloys. They have a very high 97% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is EN AC-43200 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
60 to 88
Elastic (Young's, Tensile) Modulus, GPa 72
72
Elongation at Break, % 1.6 to 2.1
1.1
Fatigue Strength, MPa 55 to 80
67
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 200 to 270
190 to 260
Tensile Strength: Yield (Proof), MPa 120 to 170
97 to 220

Thermal Properties

Latent Heat of Fusion, J/g 510
540
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 620
600
Melting Onset (Solidus), °C 560
590
Specific Heat Capacity, J/kg-K 890
900
Thermal Conductivity, W/m-K 120
140
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
34
Electrical Conductivity: Equal Weight (Specific), % IACS 99
120

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.7
2.6
Embodied Carbon, kg CO2/kg material 7.8
7.8
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1070
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
1.8 to 2.7
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
66 to 330
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 51
54
Strength to Weight: Axial, points 21 to 28
20 to 28
Strength to Weight: Bending, points 28 to 34
28 to 35
Thermal Diffusivity, mm2/s 50
59
Thermal Shock Resistance, points 9.2 to 12
8.8 to 12

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
86.1 to 90.8
Chromium (Cr), % 0 to 0.35
0
Copper (Cu), % 1.0 to 2.0
0 to 0.35
Iron (Fe), % 0 to 1.0
0 to 0.65
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0.2 to 0.6
0.2 to 0.45
Manganese (Mn), % 0.2 to 0.6
0 to 0.55
Nickel (Ni), % 0 to 0.25
0 to 0.15
Silicon (Si), % 7.5 to 8.5
9.0 to 11
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 1.5
0 to 0.35
Residuals, % 0
0 to 0.15

Comparable Variants