MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. EN AC-46300 Aluminum

Both 328.0 aluminum and EN AC-46300 aluminum are aluminum alloys. They have a very high 98% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is EN AC-46300 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
91
Elastic (Young's, Tensile) Modulus, GPa 72
73
Elongation at Break, % 1.6 to 2.1
1.1
Fatigue Strength, MPa 55 to 80
79
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Tensile Strength: Ultimate (UTS), MPa 200 to 270
200
Tensile Strength: Yield (Proof), MPa 120 to 170
110

Thermal Properties

Latent Heat of Fusion, J/g 510
490
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 620
630
Melting Onset (Solidus), °C 560
530
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 120
120
Thermal Expansion, µm/m-K 22
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
27
Electrical Conductivity: Equal Weight (Specific), % IACS 99
84

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 7.8
7.7
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1070
1060

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
1.9
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
89
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
49
Strength to Weight: Axial, points 21 to 28
20
Strength to Weight: Bending, points 28 to 34
27
Thermal Diffusivity, mm2/s 50
47
Thermal Shock Resistance, points 9.2 to 12
9.1

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
84 to 90
Chromium (Cr), % 0 to 0.35
0
Copper (Cu), % 1.0 to 2.0
3.0 to 4.0
Iron (Fe), % 0 to 1.0
0 to 0.8
Lead (Pb), % 0
0 to 0.15
Magnesium (Mg), % 0.2 to 0.6
0.3 to 0.6
Manganese (Mn), % 0.2 to 0.6
0.2 to 0.65
Nickel (Ni), % 0 to 0.25
0 to 0.3
Silicon (Si), % 7.5 to 8.5
6.5 to 8.0
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 1.5
0 to 0.65
Residuals, % 0
0 to 0.55