MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. EN AC-46500 Aluminum

Both 328.0 aluminum and EN AC-46500 aluminum are aluminum alloys. They have a very high 96% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is EN AC-46500 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
91
Elastic (Young's, Tensile) Modulus, GPa 72
74
Elongation at Break, % 1.6 to 2.1
1.0
Fatigue Strength, MPa 55 to 80
110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
28
Tensile Strength: Ultimate (UTS), MPa 200 to 270
270
Tensile Strength: Yield (Proof), MPa 120 to 170
160

Thermal Properties

Latent Heat of Fusion, J/g 510
520
Maximum Temperature: Mechanical, °C 180
180
Melting Completion (Liquidus), °C 620
610
Melting Onset (Solidus), °C 560
520
Specific Heat Capacity, J/kg-K 890
880
Thermal Conductivity, W/m-K 120
100
Thermal Expansion, µm/m-K 22
21

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
26
Electrical Conductivity: Equal Weight (Specific), % IACS 99
81

Otherwise Unclassified Properties

Base Metal Price, % relative 10
10
Density, g/cm3 2.7
2.9
Embodied Carbon, kg CO2/kg material 7.8
7.6
Embodied Energy, MJ/kg 140
140
Embodied Water, L/kg 1070
1030

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
2.3
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
170
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
49
Strength to Weight: Axial, points 21 to 28
26
Strength to Weight: Bending, points 28 to 34
32
Thermal Diffusivity, mm2/s 50
41
Thermal Shock Resistance, points 9.2 to 12
12

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
77.9 to 90
Chromium (Cr), % 0 to 0.35
0 to 0.15
Copper (Cu), % 1.0 to 2.0
2.0 to 4.0
Iron (Fe), % 0 to 1.0
0 to 1.3
Lead (Pb), % 0
0 to 0.35
Magnesium (Mg), % 0.2 to 0.6
0.050 to 0.55
Manganese (Mn), % 0.2 to 0.6
0 to 0.55
Nickel (Ni), % 0 to 0.25
0 to 0.55
Silicon (Si), % 7.5 to 8.5
8.0 to 11
Tin (Sn), % 0
0 to 0.15
Titanium (Ti), % 0 to 0.25
0 to 0.25
Zinc (Zn), % 0 to 1.5
0 to 3.0
Residuals, % 0
0 to 0.25