MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. N06603 Nickel

328.0 aluminum belongs to the aluminum alloys classification, while N06603 nickel belongs to the nickel alloys. There are 29 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is N06603 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 2.1
28
Fatigue Strength, MPa 55 to 80
230
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Tensile Strength: Ultimate (UTS), MPa 200 to 270
740
Tensile Strength: Yield (Proof), MPa 120 to 170
340

Thermal Properties

Latent Heat of Fusion, J/g 510
320
Maximum Temperature: Mechanical, °C 180
1000
Melting Completion (Liquidus), °C 620
1340
Melting Onset (Solidus), °C 560
1300
Specific Heat Capacity, J/kg-K 890
480
Thermal Conductivity, W/m-K 120
11
Thermal Expansion, µm/m-K 22
14

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 30
1.5
Electrical Conductivity: Equal Weight (Specific), % IACS 99
1.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
50
Density, g/cm3 2.7
8.2
Embodied Carbon, kg CO2/kg material 7.8
8.4
Embodied Energy, MJ/kg 140
120
Embodied Water, L/kg 1070
300

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
170
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
300
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 21 to 28
25
Strength to Weight: Bending, points 28 to 34
22
Thermal Diffusivity, mm2/s 50
2.9
Thermal Shock Resistance, points 9.2 to 12
20

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
2.4 to 3.0
Carbon (C), % 0
0.2 to 0.4
Chromium (Cr), % 0 to 0.35
24 to 26
Copper (Cu), % 1.0 to 2.0
0 to 0.5
Iron (Fe), % 0 to 1.0
8.0 to 11
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
0 to 0.15
Nickel (Ni), % 0 to 0.25
57.7 to 65.6
Phosphorus (P), % 0
0 to 0.2
Silicon (Si), % 7.5 to 8.5
0 to 0.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0.010 to 0.25
Yttrium (Y), % 0
0.010 to 0.15
Zinc (Zn), % 0 to 1.5
0.010 to 0.1
Residuals, % 0 to 0.5
0