MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. S30615 Stainless Steel

328.0 aluminum belongs to the aluminum alloys classification, while S30615 stainless steel belongs to the iron alloys. There are 28 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is S30615 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
190
Elastic (Young's, Tensile) Modulus, GPa 72
190
Elongation at Break, % 1.6 to 2.1
39
Fatigue Strength, MPa 55 to 80
270
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Tensile Strength: Ultimate (UTS), MPa 200 to 270
690
Tensile Strength: Yield (Proof), MPa 120 to 170
310

Thermal Properties

Latent Heat of Fusion, J/g 510
340
Maximum Temperature: Mechanical, °C 180
960
Melting Completion (Liquidus), °C 620
1370
Melting Onset (Solidus), °C 560
1320
Specific Heat Capacity, J/kg-K 890
500
Thermal Conductivity, W/m-K 120
14
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 2.7
7.6
Embodied Carbon, kg CO2/kg material 7.8
3.7
Embodied Energy, MJ/kg 140
53
Embodied Water, L/kg 1070
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
220
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
260
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
25
Strength to Weight: Axial, points 21 to 28
25
Strength to Weight: Bending, points 28 to 34
23
Thermal Diffusivity, mm2/s 50
3.7
Thermal Shock Resistance, points 9.2 to 12
16

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
0.8 to 1.5
Carbon (C), % 0
0.16 to 0.24
Chromium (Cr), % 0 to 0.35
17 to 19.5
Copper (Cu), % 1.0 to 2.0
0
Iron (Fe), % 0 to 1.0
56.7 to 65.3
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
0 to 2.0
Nickel (Ni), % 0 to 0.25
13.5 to 16
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 8.5
3.2 to 4.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0