MakeItFrom.com
Menu (ESC)

328.0 Aluminum vs. S31727 Stainless Steel

328.0 aluminum belongs to the aluminum alloys classification, while S31727 stainless steel belongs to the iron alloys. There are 26 material properties with values for both materials. Properties with values for just one material (10, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 328.0 aluminum and the bottom bar is S31727 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 60 to 82
190
Elastic (Young's, Tensile) Modulus, GPa 72
200
Elongation at Break, % 1.6 to 2.1
40
Fatigue Strength, MPa 55 to 80
240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
78
Tensile Strength: Ultimate (UTS), MPa 200 to 270
630
Tensile Strength: Yield (Proof), MPa 120 to 170
270

Thermal Properties

Latent Heat of Fusion, J/g 510
290
Maximum Temperature: Mechanical, °C 180
1010
Melting Completion (Liquidus), °C 620
1440
Melting Onset (Solidus), °C 560
1390
Specific Heat Capacity, J/kg-K 890
470
Thermal Expansion, µm/m-K 22
16

Otherwise Unclassified Properties

Base Metal Price, % relative 10
24
Density, g/cm3 2.7
8.0
Embodied Carbon, kg CO2/kg material 7.8
4.7
Embodied Energy, MJ/kg 140
64
Embodied Water, L/kg 1070
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.8 to 5.0
200
Resilience: Unit (Modulus of Resilience), kJ/m3 92 to 200
190
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 51
24
Strength to Weight: Axial, points 21 to 28
22
Strength to Weight: Bending, points 28 to 34
20
Thermal Shock Resistance, points 9.2 to 12
14

Alloy Composition

Aluminum (Al), % 84.5 to 91.1
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0 to 0.35
17.5 to 19
Copper (Cu), % 1.0 to 2.0
2.8 to 4.0
Iron (Fe), % 0 to 1.0
53.7 to 61.3
Magnesium (Mg), % 0.2 to 0.6
0
Manganese (Mn), % 0.2 to 0.6
0 to 1.0
Molybdenum (Mo), % 0
3.8 to 4.5
Nickel (Ni), % 0 to 0.25
14.5 to 16.5
Nitrogen (N), % 0
0.15 to 0.21
Phosphorus (P), % 0
0 to 0.030
Silicon (Si), % 7.5 to 8.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.5
0
Residuals, % 0 to 0.5
0