MakeItFrom.com
Menu (ESC)

3303 Aluminum vs. EN 1.4005 Stainless Steel

3303 aluminum belongs to the aluminum alloys classification, while EN 1.4005 stainless steel belongs to the iron alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3303 aluminum and the bottom bar is EN 1.4005 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
190
Elongation at Break, % 23
13 to 21
Fatigue Strength, MPa 43
240 to 290
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 26
76
Shear Strength, MPa 69
390 to 450
Tensile Strength: Ultimate (UTS), MPa 110
630 to 750
Tensile Strength: Yield (Proof), MPa 39
370 to 500

Thermal Properties

Latent Heat of Fusion, J/g 400
270
Maximum Temperature: Mechanical, °C 180
760
Melting Completion (Liquidus), °C 650
1440
Melting Onset (Solidus), °C 620
1400
Specific Heat Capacity, J/kg-K 900
480
Thermal Conductivity, W/m-K 170
30
Thermal Expansion, µm/m-K 23
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
2.9
Electrical Conductivity: Equal Weight (Specific), % IACS 140
3.3

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
7.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 8.1
2.0
Embodied Energy, MJ/kg 150
28
Embodied Water, L/kg 1180
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
90 to 110
Resilience: Unit (Modulus of Resilience), kJ/m3 11
350 to 650
Stiffness to Weight: Axial, points 14
14
Stiffness to Weight: Bending, points 49
25
Strength to Weight: Axial, points 11
23 to 27
Strength to Weight: Bending, points 18
21 to 24
Thermal Diffusivity, mm2/s 67
8.1
Thermal Shock Resistance, points 4.8
23 to 27

Alloy Composition

Aluminum (Al), % 96.6 to 99
0
Carbon (C), % 0
0.060 to 0.15
Chromium (Cr), % 0
12 to 14
Copper (Cu), % 0.050 to 0.2
0
Iron (Fe), % 0 to 0.7
82.4 to 87.8
Manganese (Mn), % 1.0 to 1.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.6
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 0 to 0.6
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0