MakeItFrom.com
Menu (ESC)

3303 Aluminum vs. EN AC-46400 Aluminum

Both 3303 aluminum and EN AC-46400 aluminum are aluminum alloys. They have 89% of their average alloy composition in common. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown.

For each property being compared, the top bar is 3303 aluminum and the bottom bar is EN AC-46400 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
72
Elongation at Break, % 23
1.1 to 1.7
Fatigue Strength, MPa 43
75 to 85
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
27
Tensile Strength: Ultimate (UTS), MPa 110
170 to 310
Tensile Strength: Yield (Proof), MPa 39
110 to 270

Thermal Properties

Latent Heat of Fusion, J/g 400
520
Maximum Temperature: Mechanical, °C 180
170
Melting Completion (Liquidus), °C 650
610
Melting Onset (Solidus), °C 620
570
Specific Heat Capacity, J/kg-K 900
890
Thermal Conductivity, W/m-K 170
130
Thermal Expansion, µm/m-K 23
22

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
33
Electrical Conductivity: Equal Weight (Specific), % IACS 140
110

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
9.5
Density, g/cm3 2.8
2.7
Embodied Carbon, kg CO2/kg material 8.1
7.8
Embodied Energy, MJ/kg 150
150
Embodied Water, L/kg 1180
1070

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
1.7 to 4.9
Resilience: Unit (Modulus of Resilience), kJ/m3 11
82 to 500
Stiffness to Weight: Axial, points 14
15
Stiffness to Weight: Bending, points 49
52
Strength to Weight: Axial, points 11
18 to 32
Strength to Weight: Bending, points 18
26 to 38
Thermal Diffusivity, mm2/s 67
55
Thermal Shock Resistance, points 4.8
7.8 to 14

Alloy Composition

Aluminum (Al), % 96.6 to 99
85.4 to 90.5
Copper (Cu), % 0.050 to 0.2
0.8 to 1.3
Iron (Fe), % 0 to 0.7
0 to 0.8
Lead (Pb), % 0
0 to 0.1
Magnesium (Mg), % 0
0.25 to 0.65
Manganese (Mn), % 1.0 to 1.5
0.15 to 0.55
Nickel (Ni), % 0
0 to 0.2
Silicon (Si), % 0 to 0.6
8.3 to 9.7
Tin (Sn), % 0
0 to 0.1
Titanium (Ti), % 0
0 to 0.2
Zinc (Zn), % 0 to 0.3
0 to 0.8
Residuals, % 0
0 to 0.25