MakeItFrom.com
Menu (ESC)

3303 Aluminum vs. C68400 Brass

3303 aluminum belongs to the aluminum alloys classification, while C68400 brass belongs to the copper alloys. There are 29 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3303 aluminum and the bottom bar is C68400 brass.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
110
Elongation at Break, % 23
18
Poisson's Ratio 0.33
0.31
Shear Modulus, GPa 26
41
Shear Strength, MPa 69
330
Tensile Strength: Ultimate (UTS), MPa 110
540
Tensile Strength: Yield (Proof), MPa 39
310

Thermal Properties

Latent Heat of Fusion, J/g 400
210
Maximum Temperature: Mechanical, °C 180
130
Melting Completion (Liquidus), °C 650
840
Melting Onset (Solidus), °C 620
820
Specific Heat Capacity, J/kg-K 900
400
Thermal Conductivity, W/m-K 170
66
Thermal Expansion, µm/m-K 23
20

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 43
87
Electrical Conductivity: Equal Weight (Specific), % IACS 140
99

Otherwise Unclassified Properties

Base Metal Price, % relative 9.5
23
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 8.1
2.7
Embodied Energy, MJ/kg 150
47
Embodied Water, L/kg 1180
320

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
81
Resilience: Unit (Modulus of Resilience), kJ/m3 11
460
Stiffness to Weight: Axial, points 14
7.5
Stiffness to Weight: Bending, points 49
20
Strength to Weight: Axial, points 11
19
Strength to Weight: Bending, points 18
19
Thermal Diffusivity, mm2/s 67
21
Thermal Shock Resistance, points 4.8
18

Alloy Composition

Aluminum (Al), % 96.6 to 99
0 to 0.5
Boron (B), % 0
0.0010 to 0.030
Copper (Cu), % 0.050 to 0.2
59 to 64
Iron (Fe), % 0 to 0.7
0 to 1.0
Lead (Pb), % 0
0 to 0.090
Manganese (Mn), % 1.0 to 1.5
0.2 to 1.5
Nickel (Ni), % 0
0 to 0.5
Phosphorus (P), % 0
0.030 to 0.3
Silicon (Si), % 0 to 0.6
1.5 to 2.5
Tin (Sn), % 0
0 to 0.5
Zinc (Zn), % 0 to 0.3
28.6 to 39.3
Residuals, % 0
0 to 0.5