MakeItFrom.com
Menu (ESC)

3303 Aluminum vs. R05252 Alloy

3303 aluminum belongs to the aluminum alloys classification, while R05252 alloy belongs to the otherwise unclassified metals. There are 18 material properties with values for both materials. Properties with values for just one material (12, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 3303 aluminum and the bottom bar is R05252 alloy.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 70
200
Elongation at Break, % 23
23
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 26
73
Tensile Strength: Ultimate (UTS), MPa 110
310
Tensile Strength: Yield (Proof), MPa 39
220

Thermal Properties

Latent Heat of Fusion, J/g 400
140
Specific Heat Capacity, J/kg-K 900
140
Thermal Expansion, µm/m-K 23
6.7

Otherwise Unclassified Properties

Density, g/cm3 2.8
17
Embodied Water, L/kg 1180
600

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 20
63
Resilience: Unit (Modulus of Resilience), kJ/m3 11
120
Stiffness to Weight: Axial, points 14
6.5
Stiffness to Weight: Bending, points 49
12
Strength to Weight: Axial, points 11
5.2
Strength to Weight: Bending, points 18
6.1
Thermal Shock Resistance, points 4.8
17

Alloy Composition

Aluminum (Al), % 96.6 to 99
0
Carbon (C), % 0
0 to 0.010
Copper (Cu), % 0.050 to 0.2
0
Hydrogen (H), % 0
0 to 0.0015
Iron (Fe), % 0 to 0.7
0 to 0.010
Manganese (Mn), % 1.0 to 1.5
0
Molybdenum (Mo), % 0
0 to 0.020
Nickel (Ni), % 0
0 to 0.010
Niobium (Nb), % 0
0 to 0.1
Nitrogen (N), % 0
0 to 0.010
Oxygen (O), % 0
0 to 0.015
Silicon (Si), % 0 to 0.6
0 to 0.0050
Tantalum (Ta), % 0
88.8 to 91
Titanium (Ti), % 0
0 to 0.010
Tungsten (W), % 0
9.0 to 11
Zinc (Zn), % 0 to 0.3
0
Residuals, % 0 to 0.15
0