MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. 2007 Aluminum

Both 332.0 aluminum and 2007 aluminum are aluminum alloys. They have a moderately high 90% of their average alloy composition in common. There are 30 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is 2007 aluminum.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
71
Elongation at Break, % 1.0
5.6 to 8.0
Fatigue Strength, MPa 90
91 to 110
Poisson's Ratio 0.33
0.33
Shear Modulus, GPa 27
27
Shear Strength, MPa 190
220 to 250
Tensile Strength: Ultimate (UTS), MPa 250
370 to 420
Tensile Strength: Yield (Proof), MPa 190
240 to 270

Thermal Properties

Latent Heat of Fusion, J/g 530
390
Maximum Temperature: Mechanical, °C 170
190
Melting Completion (Liquidus), °C 580
640
Melting Onset (Solidus), °C 530
510
Specific Heat Capacity, J/kg-K 880
870
Thermal Conductivity, W/m-K 100
130
Thermal Expansion, µm/m-K 21
23

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
47
Electrical Conductivity: Equal Weight (Specific), % IACS 84
140

Otherwise Unclassified Properties

Base Metal Price, % relative 10
11
Density, g/cm3 2.8
3.1
Embodied Carbon, kg CO2/kg material 7.8
8.0
Embodied Energy, MJ/kg 140
150
Embodied Water, L/kg 1040
1130

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
21 to 26
Resilience: Unit (Modulus of Resilience), kJ/m3 250
390 to 530
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
44
Strength to Weight: Axial, points 24
33 to 38
Strength to Weight: Bending, points 31
37 to 40
Thermal Diffusivity, mm2/s 42
48
Thermal Shock Resistance, points 12
16 to 19

Alloy Composition

Aluminum (Al), % 80.1 to 89
87.5 to 95
Bismuth (Bi), % 0
0 to 0.2
Chromium (Cr), % 0
0 to 0.1
Copper (Cu), % 2.0 to 4.0
3.3 to 4.6
Iron (Fe), % 0 to 1.2
0 to 0.8
Lead (Pb), % 0
0.8 to 1.5
Magnesium (Mg), % 0.5 to 1.5
0.4 to 1.8
Manganese (Mn), % 0 to 0.5
0.5 to 1.0
Nickel (Ni), % 0 to 0.5
0 to 0.2
Silicon (Si), % 8.5 to 10.5
0 to 0.8
Tin (Sn), % 0
0 to 0.2
Titanium (Ti), % 0 to 0.25
0 to 0.2
Zinc (Zn), % 0 to 1.0
0 to 0.8
Residuals, % 0
0 to 0.3