MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. ACI-ASTM CD6MN Steel

332.0 aluminum belongs to the aluminum alloys classification, while ACI-ASTM CD6MN steel belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is ACI-ASTM CD6MN steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
28
Fatigue Strength, MPa 90
370
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 250
730
Tensile Strength: Yield (Proof), MPa 190
510

Thermal Properties

Latent Heat of Fusion, J/g 530
300
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1440
Melting Onset (Solidus), °C 530
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
16
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.4

Otherwise Unclassified Properties

Base Metal Price, % relative 10
17
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.8
3.4
Embodied Energy, MJ/kg 140
48
Embodied Water, L/kg 1040
170

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
180
Resilience: Unit (Modulus of Resilience), kJ/m3 250
650
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24
26
Strength to Weight: Bending, points 31
23
Thermal Diffusivity, mm2/s 42
4.4
Thermal Shock Resistance, points 12
20

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
24 to 27
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.2
62.1 to 70.1
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
1.8 to 2.5
Nickel (Ni), % 0 to 0.5
4.0 to 6.0
Nitrogen (N), % 0
0.15 to 0.25
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.5 to 10.5
0 to 1.0
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0