MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. AISI 348H Stainless Steel

332.0 aluminum belongs to the aluminum alloys classification, while AISI 348H stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is AISI 348H stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
180
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
40
Fatigue Strength, MPa 90
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77
Shear Strength, MPa 190
400
Tensile Strength: Ultimate (UTS), MPa 250
580
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 530
290
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 580
1430
Melting Onset (Solidus), °C 530
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
15
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.4
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
20
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
3.9
Embodied Energy, MJ/kg 140
56
Embodied Water, L/kg 1040
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
190
Resilience: Unit (Modulus of Resilience), kJ/m3 250
140
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 31
20
Thermal Diffusivity, mm2/s 42
4.1
Thermal Shock Resistance, points 12
13

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0.040 to 0.1
Chromium (Cr), % 0
17 to 19
Cobalt (Co), % 0
0 to 0.2
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.2
63.8 to 73.6
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.5
9.0 to 13
Niobium (Nb), % 0
0.32 to 1.0
Phosphorus (P), % 0
0 to 0.045
Silicon (Si), % 8.5 to 10.5
0 to 0.75
Sulfur (S), % 0
0 to 0.030
Tantalum (Ta), % 0
0 to 0.1
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0