MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. ASTM A182 Grade F10

332.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F10 belongs to the iron alloys. There are 29 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is ASTM A182 grade F10.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
190
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
34
Fatigue Strength, MPa 90
180
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
74
Shear Strength, MPa 190
420
Tensile Strength: Ultimate (UTS), MPa 250
630
Tensile Strength: Yield (Proof), MPa 190
230

Thermal Properties

Latent Heat of Fusion, J/g 530
290
Maximum Temperature: Mechanical, °C 170
600
Melting Completion (Liquidus), °C 580
1420
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 880
470
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
15
Electrical Conductivity: Equal Weight (Specific), % IACS 84
17

Otherwise Unclassified Properties

Base Metal Price, % relative 10
18
Density, g/cm3 2.8
7.9
Embodied Carbon, kg CO2/kg material 7.8
3.6
Embodied Energy, MJ/kg 140
51
Embodied Water, L/kg 1040
120

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
170
Resilience: Unit (Modulus of Resilience), kJ/m3 250
140
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24
22
Strength to Weight: Bending, points 31
21
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
7.0 to 9.0
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.2
66.5 to 72.4
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0.5 to 0.8
Nickel (Ni), % 0 to 0.5
19 to 22
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.5 to 10.5
1.0 to 1.4
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0