MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. ASTM A182 Grade F6b

332.0 aluminum belongs to the aluminum alloys classification, while ASTM A182 grade F6b belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is ASTM A182 grade F6b.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
260
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
18
Fatigue Strength, MPa 90
440
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 190
530
Tensile Strength: Ultimate (UTS), MPa 250
850
Tensile Strength: Yield (Proof), MPa 190
710

Thermal Properties

Latent Heat of Fusion, J/g 530
280
Maximum Temperature: Mechanical, °C 170
750
Melting Completion (Liquidus), °C 580
1450
Melting Onset (Solidus), °C 530
1400
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
25
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.8
Electrical Conductivity: Equal Weight (Specific), % IACS 84
3.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
8.0
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
2.2
Embodied Energy, MJ/kg 140
30
Embodied Water, L/kg 1040
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
140
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1280
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24
30
Strength to Weight: Bending, points 31
26
Thermal Diffusivity, mm2/s 42
6.7
Thermal Shock Resistance, points 12
31

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
11.5 to 13.5
Copper (Cu), % 2.0 to 4.0
0 to 0.5
Iron (Fe), % 0 to 1.2
81.2 to 87.1
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0.4 to 0.6
Nickel (Ni), % 0 to 0.5
1.0 to 2.0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.5 to 10.5
0 to 1.0
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0