MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. AWS E120C-K4

332.0 aluminum belongs to the aluminum alloys classification, while AWS E120C-K4 belongs to the iron alloys. There are 27 material properties with values for both materials. Properties with values for just one material (4, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is AWS E120C-K4.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
17
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Tensile Strength: Ultimate (UTS), MPa 250
950
Tensile Strength: Yield (Proof), MPa 190
840

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
41
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
8.0
Electrical Conductivity: Equal Weight (Specific), % IACS 84
9.2

Otherwise Unclassified Properties

Base Metal Price, % relative 10
3.5
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.7
Embodied Energy, MJ/kg 140
23
Embodied Water, L/kg 1040
54

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
160
Resilience: Unit (Modulus of Resilience), kJ/m3 250
1880
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24
34
Strength to Weight: Bending, points 31
27
Thermal Diffusivity, mm2/s 42
11
Thermal Shock Resistance, points 12
28

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0 to 0.15
Chromium (Cr), % 0
0.15 to 0.65
Copper (Cu), % 2.0 to 4.0
0 to 0.35
Iron (Fe), % 0 to 1.2
92.1 to 98.4
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0.75 to 2.3
Molybdenum (Mo), % 0
0.25 to 0.65
Nickel (Ni), % 0 to 0.5
0.5 to 2.5
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.5 to 10.5
0 to 0.8
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0 to 0.030
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0
0 to 0.5