MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. EN 1.3956 Stainless Steel

332.0 aluminum belongs to the aluminum alloys classification, while EN 1.3956 stainless steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (8, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is EN 1.3956 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
27
Fatigue Strength, MPa 90
240
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Tensile Strength: Ultimate (UTS), MPa 250
650
Tensile Strength: Yield (Proof), MPa 190
330

Thermal Properties

Latent Heat of Fusion, J/g 530
300
Maximum Temperature: Mechanical, °C 170
1080
Melting Completion (Liquidus), °C 580
1420
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 880
480
Thermal Expansion, µm/m-K 21
13

Otherwise Unclassified Properties

Base Metal Price, % relative 10
22
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
4.8
Embodied Energy, MJ/kg 140
68
Embodied Water, L/kg 1040
180

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
150
Resilience: Unit (Modulus of Resilience), kJ/m3 250
270
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 31
21
Thermal Shock Resistance, points 12
18

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0 to 0.060
Chromium (Cr), % 0
20.5 to 23.5
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.2
51.9 to 62.1
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
4.0 to 6.0
Molybdenum (Mo), % 0
1.5 to 3.0
Nickel (Ni), % 0 to 0.5
11.5 to 13.5
Niobium (Nb), % 0
0.1 to 0.3
Nitrogen (N), % 0
0.2 to 0.4
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.5 to 10.5
0 to 1.0
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Vanadium (V), % 0
0.1 to 0.3
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0