MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. EN 1.4035 Stainless Steel

332.0 aluminum belongs to the aluminum alloys classification, while EN 1.4035 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is EN 1.4035 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
220
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
18
Fatigue Strength, MPa 90
250
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
76
Shear Strength, MPa 190
430
Tensile Strength: Ultimate (UTS), MPa 250
690
Tensile Strength: Yield (Proof), MPa 190
400

Thermal Properties

Latent Heat of Fusion, J/g 530
270
Maximum Temperature: Mechanical, °C 170
760
Melting Completion (Liquidus), °C 580
1430
Melting Onset (Solidus), °C 530
1390
Specific Heat Capacity, J/kg-K 880
480
Thermal Conductivity, W/m-K 100
29
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
3.0
Electrical Conductivity: Equal Weight (Specific), % IACS 84
3.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
7.0
Density, g/cm3 2.8
7.7
Embodied Carbon, kg CO2/kg material 7.8
2.0
Embodied Energy, MJ/kg 140
27
Embodied Water, L/kg 1040
100

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
420
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 31
22
Thermal Diffusivity, mm2/s 42
7.8
Thermal Shock Resistance, points 12
25

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0.43 to 0.5
Chromium (Cr), % 0
12.5 to 14
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.2
82.1 to 86.9
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.5 to 10.5
0 to 1.0
Sulfur (S), % 0
0.15 to 0.35
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0