MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. EN 1.4361 Stainless Steel

332.0 aluminum belongs to the aluminum alloys classification, while EN 1.4361 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (3, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is EN 1.4361 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
200
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
43
Fatigue Strength, MPa 90
220
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
75
Shear Strength, MPa 190
440
Tensile Strength: Ultimate (UTS), MPa 250
630
Tensile Strength: Yield (Proof), MPa 190
250

Thermal Properties

Latent Heat of Fusion, J/g 530
350
Maximum Temperature: Mechanical, °C 170
940
Melting Completion (Liquidus), °C 580
1370
Melting Onset (Solidus), °C 530
1330
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 100
14
Thermal Expansion, µm/m-K 21
16

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.1
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.5

Otherwise Unclassified Properties

Base Metal Price, % relative 10
19
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 7.8
3.6
Embodied Energy, MJ/kg 140
52
Embodied Water, L/kg 1040
150

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
220
Resilience: Unit (Modulus of Resilience), kJ/m3 250
160
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Strength to Weight: Axial, points 24
23
Strength to Weight: Bending, points 31
21
Thermal Diffusivity, mm2/s 42
3.7
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0 to 0.015
Chromium (Cr), % 0
16.5 to 18.5
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.2
58.7 to 65.8
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.5
14 to 16
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.5 to 10.5
3.7 to 4.5
Sulfur (S), % 0
0 to 0.010
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0