MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. EN 1.4740 Stainless Steel

332.0 aluminum belongs to the aluminum alloys classification, while EN 1.4740 stainless steel belongs to the iron alloys. There are 22 material properties with values for both materials. Properties with values for just one material (11, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is EN 1.4740 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
260
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
22
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
77

Thermal Properties

Latent Heat of Fusion, J/g 530
300
Maximum Temperature: Mechanical, °C 170
900
Melting Completion (Liquidus), °C 580
1420
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 100
18
Thermal Expansion, µm/m-K 21
10

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
2.2
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.6

Otherwise Unclassified Properties

Base Metal Price, % relative 10
9.5
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 7.8
2.3
Embodied Energy, MJ/kg 140
32
Embodied Water, L/kg 1040
120

Common Calculations

Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
25
Thermal Diffusivity, mm2/s 42
4.8

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0.3 to 0.5
Chromium (Cr), % 0
16 to 19
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.2
75.4 to 82.7
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
0 to 0.5
Nickel (Ni), % 0 to 0.5
0 to 1.0
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.5 to 10.5
1.0 to 2.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0