MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. EN 1.4821 Stainless Steel

332.0 aluminum belongs to the aluminum alloys classification, while EN 1.4821 stainless steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is EN 1.4821 stainless steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
200
Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
18
Fatigue Strength, MPa 90
280
Poisson's Ratio 0.33
0.27
Shear Modulus, GPa 27
79
Shear Strength, MPa 190
450
Tensile Strength: Ultimate (UTS), MPa 250
730
Tensile Strength: Yield (Proof), MPa 190
450

Thermal Properties

Latent Heat of Fusion, J/g 530
310
Maximum Temperature: Mechanical, °C 170
1100
Melting Completion (Liquidus), °C 580
1410
Melting Onset (Solidus), °C 530
1370
Specific Heat Capacity, J/kg-K 880
490
Thermal Conductivity, W/m-K 100
17
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.9
Electrical Conductivity: Equal Weight (Specific), % IACS 84
2.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
15
Density, g/cm3 2.8
7.6
Embodied Carbon, kg CO2/kg material 7.8
2.9
Embodied Energy, MJ/kg 140
41
Embodied Water, L/kg 1040
160

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
110
Resilience: Unit (Modulus of Resilience), kJ/m3 250
500
Stiffness to Weight: Axial, points 15
15
Stiffness to Weight: Bending, points 50
26
Strength to Weight: Axial, points 24
26
Strength to Weight: Bending, points 31
23
Thermal Diffusivity, mm2/s 42
4.6
Thermal Shock Resistance, points 12
21

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0.1 to 0.2
Chromium (Cr), % 0
24.5 to 26.5
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.2
64.2 to 71.1
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 2.0
Nickel (Ni), % 0 to 0.5
3.5 to 5.5
Nitrogen (N), % 0
0 to 0.1
Phosphorus (P), % 0
0 to 0.040
Silicon (Si), % 8.5 to 10.5
0.8 to 1.5
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0