MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. EN 1.5502 Steel

332.0 aluminum belongs to the aluminum alloys classification, while EN 1.5502 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is EN 1.5502 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
120 to 160
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
12 to 20
Fatigue Strength, MPa 90
190 to 290
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 190
280 to 330
Tensile Strength: Ultimate (UTS), MPa 250
400 to 1380
Tensile Strength: Yield (Proof), MPa 190
270 to 440

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
52
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 84
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.9
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
41 to 210
Resilience: Unit (Modulus of Resilience), kJ/m3 250
200 to 520
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24
14 to 49
Strength to Weight: Bending, points 31
15 to 35
Thermal Diffusivity, mm2/s 42
14
Thermal Shock Resistance, points 12
12 to 40

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Boron (B), % 0
0.00080 to 0.0050
Carbon (C), % 0
0.15 to 0.2
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 2.0 to 4.0
0 to 0.25
Iron (Fe), % 0 to 1.2
98 to 99.249
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0.6 to 0.9
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.025
Silicon (Si), % 8.5 to 10.5
0 to 0.3
Sulfur (S), % 0
0 to 0.025
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0