MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. EN 1.8895 Steel

332.0 aluminum belongs to the aluminum alloys classification, while EN 1.8895 steel belongs to the iron alloys. There are 31 material properties with values for both materials. Properties with values for just one material (1, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is EN 1.8895 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
120
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
26
Fatigue Strength, MPa 90
220
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
73
Shear Strength, MPa 190
260
Tensile Strength: Ultimate (UTS), MPa 250
400
Tensile Strength: Yield (Proof), MPa 190
300

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1460
Melting Onset (Solidus), °C 530
1420
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
49
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 84
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
2.2
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.6
Embodied Energy, MJ/kg 140
21
Embodied Water, L/kg 1040
47

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
96
Resilience: Unit (Modulus of Resilience), kJ/m3 250
240
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24
14
Strength to Weight: Bending, points 31
15
Thermal Diffusivity, mm2/s 42
13
Thermal Shock Resistance, points 12
12

Alloy Composition

Aluminum (Al), % 80.1 to 89
0.020 to 0.060
Carbon (C), % 0
0 to 0.13
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.2
97 to 99.98
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.5
Molybdenum (Mo), % 0
0 to 0.2
Nickel (Ni), % 0 to 0.5
0 to 0.3
Niobium (Nb), % 0
0 to 0.050
Nitrogen (N), % 0
0 to 0.020
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.5 to 10.5
0 to 0.5
Sulfur (S), % 0
0 to 0.030
Titanium (Ti), % 0 to 0.25
0 to 0.050
Vanadium (V), % 0
0 to 0.080
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0