MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. EN 2.4951 Nickel

332.0 aluminum belongs to the aluminum alloys classification, while EN 2.4951 nickel belongs to the nickel alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is EN 2.4951 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
200
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
34
Fatigue Strength, MPa 90
200
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
76
Shear Strength, MPa 190
500
Tensile Strength: Ultimate (UTS), MPa 250
750
Tensile Strength: Yield (Proof), MPa 190
270

Thermal Properties

Latent Heat of Fusion, J/g 530
320
Maximum Temperature: Mechanical, °C 170
1150
Melting Completion (Liquidus), °C 580
1360
Melting Onset (Solidus), °C 530
1310
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 84
1.7

Otherwise Unclassified Properties

Base Metal Price, % relative 10
60
Density, g/cm3 2.8
8.5
Embodied Carbon, kg CO2/kg material 7.8
9.3
Embodied Energy, MJ/kg 140
130
Embodied Water, L/kg 1040
280

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
200
Resilience: Unit (Modulus of Resilience), kJ/m3 250
190
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
23
Strength to Weight: Axial, points 24
25
Strength to Weight: Bending, points 31
22
Thermal Diffusivity, mm2/s 42
3.1
Thermal Shock Resistance, points 12
23

Alloy Composition

Aluminum (Al), % 80.1 to 89
0 to 0.3
Carbon (C), % 0
0.080 to 0.15
Chromium (Cr), % 0
18 to 21
Cobalt (Co), % 0
0 to 5.0
Copper (Cu), % 2.0 to 4.0
0 to 0.5
Iron (Fe), % 0 to 1.2
0 to 5.0
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Nickel (Ni), % 0 to 0.5
65.4 to 81.7
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.5 to 10.5
0 to 1.0
Sulfur (S), % 0
0 to 0.015
Titanium (Ti), % 0 to 0.25
0.2 to 0.6
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0