MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. Grade VDC Steel

332.0 aluminum belongs to the aluminum alloys classification, while grade VDC steel belongs to the iron alloys. There are 25 material properties with values for both materials. Properties with values for just one material (7, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is grade VDC steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
510
Elastic (Young's, Tensile) Modulus, GPa 73
190
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
80
Tensile Strength: Ultimate (UTS), MPa 250
1700

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1450
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
51
Thermal Expansion, µm/m-K 21
13

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.1
Electrical Conductivity: Equal Weight (Specific), % IACS 84
8.1

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.9
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
47

Common Calculations

Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24
60
Strength to Weight: Bending, points 31
40
Thermal Diffusivity, mm2/s 42
14
Thermal Shock Resistance, points 12
50

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0.6 to 0.75
Chromium (Cr), % 0
0 to 0.3
Copper (Cu), % 2.0 to 4.0
0 to 0.060
Iron (Fe), % 0 to 1.2
98.3 to 99.35
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0.5 to 1.0
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.020
Silicon (Si), % 8.5 to 10.5
0.15 to 0.3
Sulfur (S), % 0
0 to 0.020
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0