MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. SAE-AISI 1345 Steel

332.0 aluminum belongs to the aluminum alloys classification, while SAE-AISI 1345 steel belongs to the iron alloys. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is SAE-AISI 1345 steel.

Metric UnitsUS Customary Units

Mechanical Properties

Brinell Hardness 110
170 to 210
Elastic (Young's, Tensile) Modulus, GPa 73
190
Elongation at Break, % 1.0
11 to 23
Fatigue Strength, MPa 90
230 to 390
Poisson's Ratio 0.33
0.29
Shear Modulus, GPa 27
72
Shear Strength, MPa 190
370 to 440
Tensile Strength: Ultimate (UTS), MPa 250
590 to 730
Tensile Strength: Yield (Proof), MPa 190
330 to 620

Thermal Properties

Latent Heat of Fusion, J/g 530
250
Maximum Temperature: Mechanical, °C 170
400
Melting Completion (Liquidus), °C 580
1450
Melting Onset (Solidus), °C 530
1410
Specific Heat Capacity, J/kg-K 880
470
Thermal Conductivity, W/m-K 100
51
Thermal Expansion, µm/m-K 21
12

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
7.2
Electrical Conductivity: Equal Weight (Specific), % IACS 84
8.3

Otherwise Unclassified Properties

Base Metal Price, % relative 10
1.9
Density, g/cm3 2.8
7.8
Embodied Carbon, kg CO2/kg material 7.8
1.4
Embodied Energy, MJ/kg 140
19
Embodied Water, L/kg 1040
48

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
78 to 120
Resilience: Unit (Modulus of Resilience), kJ/m3 250
290 to 1040
Stiffness to Weight: Axial, points 15
13
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24
21 to 26
Strength to Weight: Bending, points 31
20 to 23
Thermal Diffusivity, mm2/s 42
14
Thermal Shock Resistance, points 12
19 to 23

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0.43 to 0.48
Copper (Cu), % 2.0 to 4.0
0
Iron (Fe), % 0 to 1.2
97.2 to 97.8
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
1.6 to 1.9
Nickel (Ni), % 0 to 0.5
0
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.5 to 10.5
0.15 to 0.35
Sulfur (S), % 0
0 to 0.040
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0