MakeItFrom.com
Menu (ESC)

332.0 Aluminum vs. N08024 Nickel

332.0 aluminum belongs to the aluminum alloys classification, while N08024 nickel belongs to the nickel alloys. There are 30 material properties with values for both materials. Properties with values for just one material (2, in this case) are not shown. Please note that the two materials have significantly dissimilar densities. This means that additional care is required when interpreting the data, because some material properties are based on units of mass, while others are based on units of area or volume.

For each property being compared, the top bar is 332.0 aluminum and the bottom bar is N08024 nickel.

Metric UnitsUS Customary Units

Mechanical Properties

Elastic (Young's, Tensile) Modulus, GPa 73
200
Elongation at Break, % 1.0
34
Fatigue Strength, MPa 90
200
Poisson's Ratio 0.33
0.28
Shear Modulus, GPa 27
79
Shear Strength, MPa 190
410
Tensile Strength: Ultimate (UTS), MPa 250
620
Tensile Strength: Yield (Proof), MPa 190
270

Thermal Properties

Latent Heat of Fusion, J/g 530
310
Maximum Temperature: Mechanical, °C 170
990
Melting Completion (Liquidus), °C 580
1430
Melting Onset (Solidus), °C 530
1380
Specific Heat Capacity, J/kg-K 880
460
Thermal Conductivity, W/m-K 100
12
Thermal Expansion, µm/m-K 21
15

Electrical Properties

Electrical Conductivity: Equal Volume, % IACS 26
1.6
Electrical Conductivity: Equal Weight (Specific), % IACS 84
1.8

Otherwise Unclassified Properties

Base Metal Price, % relative 10
41
Density, g/cm3 2.8
8.2
Embodied Carbon, kg CO2/kg material 7.8
7.2
Embodied Energy, MJ/kg 140
99
Embodied Water, L/kg 1040
230

Common Calculations

Resilience: Ultimate (Unit Rupture Work), MJ/m3 2.3
170
Resilience: Unit (Modulus of Resilience), kJ/m3 250
180
Stiffness to Weight: Axial, points 15
14
Stiffness to Weight: Bending, points 50
24
Strength to Weight: Axial, points 24
21
Strength to Weight: Bending, points 31
20
Thermal Diffusivity, mm2/s 42
3.2
Thermal Shock Resistance, points 12
15

Alloy Composition

Aluminum (Al), % 80.1 to 89
0
Carbon (C), % 0
0 to 0.030
Chromium (Cr), % 0
22.5 to 25
Copper (Cu), % 2.0 to 4.0
0.5 to 1.5
Iron (Fe), % 0 to 1.2
26.6 to 38.4
Magnesium (Mg), % 0.5 to 1.5
0
Manganese (Mn), % 0 to 0.5
0 to 1.0
Molybdenum (Mo), % 0
3.5 to 5.0
Nickel (Ni), % 0 to 0.5
35 to 40
Niobium (Nb), % 0
0.15 to 0.35
Phosphorus (P), % 0
0 to 0.035
Silicon (Si), % 8.5 to 10.5
0 to 0.5
Sulfur (S), % 0
0 to 0.035
Titanium (Ti), % 0 to 0.25
0
Zinc (Zn), % 0 to 1.0
0
Residuals, % 0 to 0.5
0